Materi Kelas 10 Tentang cara/trick mudah belajar logaritma

Advertisemen


okeee lama gak posting artikel nih dan kali ini sahabat logika akan mendapatkan ilmu baru yang berjudul logaritma,udah tau apa itu logaritma? jikalaw belum tau nih bang
logika kasi tau! dan jikalau sudah tau bisa buat nambah pengetahuan nya lagi hehehhh
Pengertian Logaritma

Logaritma adalah kebalikan dari suatu perpangkatan. Jika sebuah perpangkatan ac = b, maka dapat dinyatakan dalam logaritma sebagai:

alog b = c

dengan syarat a > 0 dan a \ne 1
sifat logaritma

Sumber gambar: careerarn.com

Pada penulisan logaritma alog b = c, a disebut bilangan pokok dan b disebut bilangan numerus atau bilangan yang dicari nilai logaritmanya (b > 0) dan c merupakan hasil logaritma. Jika nilai a sama dengan 10, biasanya 10 tidak dituliskan sehingga menjadi log b = c. Jika nilai bilangan pokoknya merupakan bilangan e (bilangan eurel) dengan e = 2,718281828 maka logaritmanya ditulis dengan logaritma natural dan penulisannya dapat disingkat menjadi ln, misalnya elog b = c menjadi:

ln b = c

Berikut ini sejumlah contoh logaritma:
Perpangkatan     Contoh Logaritma
 21 = 2     2log 2 = 1
 20 = 1     2log 1 = 0
 23 = 8     2log 8 = 3
2-3 = 8     2log  = – 3
 9^{\frac{3}{4}} = 3 \sqrt{3}     9log 3 \sqrt{3} = \frac{3}{4}
 103 = 1000     log 1000 = 3
Sifat-sifat Logaritma
1. Sifat Logaritma dari perkalian

Suatu logaritma merupakan hasil penjumlahan dari dua logaritma lain yang nilai kedua numerus-nya merupakan faktor dari nilai numerus awal. Berikut modelnya:

alog p.q = alog p + alog q

dengan syarat a > 0, a \ne 1, p > 0, q > 0.
2. Perkalian Logaritma

Suatu logaritma a dapat dikalikan dengan logaritma b jika nilai numerus logaritma a sama dengan nilai bilangan pokok logaritma b. Hasil perkalian tersebut merupakan logaritma baru dengan nilai bilangan pokok sama dengan logaritma a, dan nilai numerus sama dengan logaritma b. Berikut model sifat logaritma nya:

alog b x blog c = alog c

dengan syarat a > 0, a \ne 1.
3. Sifat Logaritma dari pembagian

Suatu logaritma merupakan hasil pengurangan dari dua logaritma lain yang nilai kedua numerus-nya merupakan pecahan atau pembagian dari nilai numerus logaritma awal. Berikut modelnya:

alog \frac{p}{q} = alog p – alog q

dengan syarat a > 0, a \ne 1, p > 0, q > 0.
4. Sifat Logaritma berbanding terbalik

Suatu logaritma berbanding terbalik dengan logaritma lain yang memiliki nilai bilangan pokok dan numerus-nya saling bertukaran. Berikut modelnya:

alog b = \frac{1}{^b log a}

dengan syarat a > 0, a \ne 1.
5. Logaritma berlawanan tanda

Suatu logaritma berlawanan tanda dengan logaritma yang memiliki numerus-nya merupakan pecahan terbalik dari nilai numerus logaritma awal. Berikut modelnya:

alog \frac{p}{q} = – alog \frac{q}{p}

dengan syarat a > 0, a \ne 1, p > 0, q > 0.
6. Sifat Logaritma dari perpangkatan

Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pengali. Berikut modelnya :

alog bp = p. alog b

dengan syarat a > 0, a \ne 1, b > 0
7. Perpangkatan Bilangan Pokok Logaritma

Suatu logaritma dengan nilai bilangan pokoknya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pembagi. Berikut modelnya:

^{a^p} log b = \frac{1}{p} ^a log b

dengan syarat a > 0, a \ne 1.
8. Bilangan pokok logaritma sebanding dengan perpangkatan numerus

Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dari nilai bilangan pokoknya memiliki hasil yang sama dengan nilai pangkat numerus tersebut. Berikut model sifat logaritma nya:

alog ap = p

dengan syarat a > 0 dan a \ne 1.
9. Perpangkatan logaritma

Suatu bilangan yang memiliki pangkat berbentuk logaritma, hasil pangkatnya adalah nilai numerus dari logaritma tersebut. Berikut modelnya:
a^{^a log m} = m

dengan syarat a > 0, a \ne 1, m > 0.
10. Mengubah basis logaritma

Suatu logaritma dapat dipecah menjadi perbandingan dua logaritma sebagai berikut:
^p log q = \frac{^a log p}{^a log q}

dengan syarat a > 0, a \ne 1, p > 0, q > 0
Advertisemen

Disclaimer: Gambar, artikel ataupun video yang ada di web ini terkadang berasal dari berbagai sumber media lain. Hak Cipta sepenuhnya dipegang oleh sumber tersebut. Jika ada masalah terkait hal ini, Anda dapat menghubungi kami disini.
Related Posts
Disqus Comments
© Copyright 2017 PELAJARAN KU - All Rights Reserved - Distributed By Artworkdesign - Created By BLAGIOKE Diberdayakan oleh Blogger